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i Abstract. In  t h i s  paper we have considered the problem of the 
structure of 3 strong collision free wave i n  a plasma perpendi- 
cular t o  i t s  magnetic f i e ld .  It is shown tha t  conditions on 
the two sides of the wave are the same and are separated by a 

so l i ta ry  pulse provided the kinezic energy of the motion at one 

end of the wave (x = -a1 say) is  l e s s  than the sum of magnetic 

and thermal energy of the plasma. 

than the sum of magnetic mdthermal  energy, no wave exists and 
the constant solution at x = -03 is  the only solution of the  
equations describing the wave form. 

If the kinet ic  energy is more 
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I. btroduction. 

The subject of the structure of a strong coUision free wave, i n  a 
v -  

1 plasma perpendicular t o  the magnetic f ie ld  has been t reated by Adlam and Alan , 
Burgers2 and Haiq L b t  and S c d k e r  3 . Hsin, L b t  and Schl'Gter in part icular  

have obtained solutions of the wave structure by solving the non-linear 

equa%ions on a coxqputer. 

In t h i s  paper we have investigated mathematical properties of the equa- 

t ions which help us t o  guess the correct solution out of the many solutions 

obtained on a computer. 

plasma with isotxqic pressure. 

is quite s t ra ight  forward. 

structure when the plasma pressure i s  anisotropic and he arrives at  the same 

general resul t  t ha t  there is no change of s t a t e  on the  two sides of the wave 

i.e., t ha t  no shock wave exists i n  a collisionless plasma perpendicular t o  

the  magnetic f ie ld .  

As an i l lus t ra t ive  example we s h a l l  consider a 

The generalization t o  the anisotropic case 

Burgers has made an extensive study of the wave 

The r e s u l t  of our paper is tha t  a sol i tary wave only exis t s  i f  the 

kinetic energy of motion, which produces the wave, is  less than the sum of 

magnetic and thermal energy of the plasma; tha t  no stationary wave ex is t s  i f  

the kinet ic  energy of motion i s  more t h a n  the sum of magnetic and thermal 

energy of the plasma. 

wave i s  the only solution of the different ia l  equation (section 4). 

2. 

In the l a t t e r  case the constant solution at one end of the 

Equations Describing the Wave Form. 

Consider a stream of plasma a t  x = -m with a constant velocity u, along 

x-axis and a constant magnetic f i e l d  B1 along z-axls. The electrons and 

ions of the plasma w i l l  dr i f t  i n  the  y-direction because of the magnetic 

f ie ld .  
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Our object i s  t o  obtain conditions at  x = +a and the form of the  wave 

As a simplifica- 
- w  

o r  waves which start from the given solution at x = -a. 

t i o n  we assume t h a t  the electrons and ions sa t i s fy  Maxwellian dis t r ibut ion 

function with variable number density, velocity components and the tempera- 

ture.  Therefore, i f  fe, f i  denote the electron and ion dis t r ibut ion 

functions 

In  Cartesian coordinates, assuming steady s ta te ,  the  Boltvnann equa- 

t i o n  can be written as 
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I 
' ,  

f o r  electrons, and 

a e; a p i  E - t  
J a'LP Mu- + e E  - + e  

3 %  * a u  

z 
for  the ions. Multiplying by 1, Ue , , % and t u ,  + ue 
and generating moments of equation (3)  we obtain 

c 
2 a 2 

( 3  

(4)  



and similar equations fox. '*'ale :ions. Let us c a l l  the sirnilar ion 

equations as  ( 5 )  ' - ( 9 )  I .  :;4a.x~-1LJ,'s equations yield 

To further simplify the problem, we w i l l  make the assumption tha t  

the space charge can be neglected. The characterist ic length 

of space charge oscil lations i s  of the order of the Debye length 4 

as we-shall see i n  this  paper, tha t  of magneto- 

4n N e  hydrodynamic oscil lations i s  of the order of 

Thus assuming tha t  the electron thermal velocity is  well below the 

velocity of l ight ,  the space charge oscil lations are  of much lower 

scale than the oscil lations we are interested in .  With the as- 

sumpt ion 

we then have u, = ui = u , say), equation (61, (6 ) '  and 

(81, (8) ' yield, respectively 

Ex 2 0 and ma= ni =% ( to  a good approximation 
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Equation (5) now gives 

where Limit E(%) = El. 

and (14) we obtain 

E l i n i n s t i n g  T + T from equations (16) 
*+-a0 i e  

Dividing by &r M W , U ,  and using the transformations 7 

we finally obtain the equations 

and 
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where 

Eguations (191, (20) satisfy the boundary conditions H =p,> u l e t  

3 .  A Mathematical Discussion of Equations (lg), (20) 

The pair (U, H )  = (1, TI 1 : 'LS a. constant solution of these 
' 1. 

equations. W e  shall study other constant solutions represented 

by (lg), (201, but we f i r s t  examine the s t a b i l i t y  of the solutions 

of (lg), (20) i n  the neighborhood of  (1, ,6!) and determine the 

nature of t h i s  c r i t i c a l  point. 

L e t  U = l- tU,,  H = /3.,-+H1. We then obtain from (19) 

where 

From ( 2 2 )  and ( 2 3 )  we obtain 

e) 2 
(24) 
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where 

etc. 

Equations (eo), (24) yield, 

e P 1- 44, K = I + -  = 
h I- 6 01 

To 2 e t r - M ~  * e  =%me cf t h e  -mbt U = 1, w2 l i n e r i z e  eqm- 

tions (23), (27). The linearized form of equation (27) is 

In all the discussion that follows we shall assume the f l o w  

velocity to be much higher thm the thermal velocity of particles 

constituting the plasma, so that 60,(l or 1 = 60,)o. The sign 
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1 of k i s  therefore determined by the expression 1 - 2 f i 2  - 6e,. 
I I n  czse I when 

U = 1 i s  a center i n  both ( 2 7 )  and (29) according t o  a known re su l t  

of Lyapounov, see Ma,lkin , pp 123-4, ( a s  no odd powers of dUL/dy occur). 

I n  case I1 when 1 - 2 h 2  - 6Cl1(0,k1 i s  negative; the point U = 1 

i s  a saddle point i n  both equatioiiu ( 2 7 )  and (29 ) .  

- 2A2 - 6e1)O, li i s  posit ive and therefore 

5 

L e t  us now consider a l l  the constant solutions represented 

by the equations (lg), (20).  According to equation (20) constant 

solutions sa t i s fy  the equation W = . This condition, together 

with equation (19) then gives the equation 
R 

f ( U )  may also be writ ten as 

flu) = (u-1) [u 
= @ - I )  &Cu) 

From Descarte's rule of signs h(U) cannot have more than one 

posit ive root. Also it i s  easy t o  see tha t  it has a posit ive root.  

L e t  t h i s  positive root  be denoted by Uo. Since f ( O ) < O ,  Uo will be 

(30)  

(31) 
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(I) fl(i) = 1 - 2 - 6e,)o 

and 

(11) 1 - 2 fi2 - 68,<0. 
As we require thae 6el( 1, Caae I may b e a m .  FPgura 1 8hW8 

a rouch sketch of f ( U )  versus U f o r  cases I and 11 above. 

To f ind the nature of the other c r i t i c a l  point U = UO, we 

write equation (20) as 

where 

g ' ( U )  has a zero at  W =(6elf4. It is interesting t o  note tha t  

t h i s  singularity of the d i f fe ren t ia l  equation can be quite close t o  1. 

For example, for = .1, (68,) * .880ll7. Higher values of 

can bring this singularity s t i l l  closer t o  U = 1. 

When equation (32) is linearized about the zero UO of f ( U ) ,  

we obtain the equation 
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where U = U0+U1 and U L (U) = 1 t . The nature of 

the point UO = l h a s  already been discussed. 

i n  addition t o  6el 4 1, tha t  Uo4 2 6@,. 
for equatlan (32) thbt i n  O Q ~  X when the point U - 1 l a  c oenter 

the other equilibrium point UO & l i s  a saddle point and conversely, 

i n  case I1 when U = l i s  a saddle point, the other equilibrium point 

UO 71 i s  a center. 

equation (27) and (29) ,  t h i s  is  equivalent t o  showing that i f  

h ( U 0 )  = 0, h given i n  (31), then U o < l  implies L(U0) < 0 and UO 

implies L ( u ~ )  > 0. 

U2 (694- 04) 
Now l e t  us assume 

We wish t o  es tabl ish 

By arguments similar t o  those given above f o r  

1 

It can be shown that 

Now, consider case 1. f ( U )  has a zero a t  U = Uo ( <  1) and IJ = 1. 

I n  the U,U plane construct; a closed loop C enclosing Uo and 1 and 

lying so close t o  the U-axis t ha t  the sign of U i s  determined by 

the last term on the left; i n  (32).  

(35) and upon considering the changes i n  the sign of f(U), it 

follows t h a t  the index of C w i t h  respect t o  (32) is  0 . 

.. 
(see Figure 2 ) .  Then using 

6 As the 

index of a center (U = 1) is  1, th i s  implies that the index of UO 

is  -1. 

then UO of necessity must be a saddle point and L(U0) L O  w i l l  hold. 

If L(u~) f 0, i . e . ,  i f  UO i s  an elementary c r i t i c a l  point, 

A similar arragement for  U O ) ~  i n  case I1 shows that the Index of UO 

i s  1 and therefore L(Uo) 2 0 holds (provided of course L(Uo) # d 



Thus the problem i s  wiuced t o  showing t ha t  the two poly- 

nomials h(U) = 3 - bU2 - b;J - 20,  and M(U) = v6 - 60, U2+ 4sl - 2b 

have no common posit ive zeros i n  e i ther  case I or case 11. Here 

we have used the definit ion b = 20,,+a2 i n  deriving the form of 

M(U) w h i c h  i s  the numerator of UL(U). 

This has not been shown i n  general, although for  particular 

choices of /3,) el, it is relat ively straightforward. The c r i t i c a l  

1 case, however, i s  when b + 
two roots Uo and 1 become equal and, of course, i n  t h i s  case M(1) = 0. 

= 2 or 2 A2+6el = 1, for then the 

1 
2 

Let us suppose tha t  b+O1is close t o  -, i .e. ,  UO i s  close t o  1 

so t h a t  (Uo - 1j2, (UO - 113 are negligible i n  comparison w i t h  UO - 1. 

Now l e t  R = U2 and expand h and M about U = 1 and R = 1. This gives 

and 

The zeros UO, Ro (=e2 - 1) of h and M may be approximated by 
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1 
1 2  Now suppose we are i n  case : E ,  that; i s  b + 0  < - . Then as b72e1, 

implies 

Theref ore 

1 
I n  case 11, b -58 7- 1 2' it follows similarly from UO - 1 7c2 - 1, 

that  l < f i < U o .  

1 do separate as required, f o r  b +€Il near - Although for  bj-el - - - 2' 

a proof f o r  the general case is  lacking, the following calculations 

Thus the positive roots of M and R, which coincide 

2' 

may be of some interest .  

Taking 8 '=  .l, b = .3, we f ind (6€11)1/4 = .880117, Uo z.88978 1 

and M(TJo) = - .l788 ( 0 .  With = .l, b = .5, we f ind UO S 1.1~6 

and M(U0) .54567 '7 0. Thus we observe tha t  a t  b = .3, Uo i s  very 

close t o  U* = (601)1/4 and so b could not be decreased fur ther  and 

- 
we have UO - 1 < R o  - 1 = U " - 140; where M(a) = 0, )O. This 

s t i l l  have Uo4 7 60,. 
Thus we have seen tha t  i n  case 11, tha t  i s  Uo 21, i f  M(U0) 7 0, 

then UO is  a center. In  t h i s  case the phase plane por t ra i t  of the 

solution is  shown i n  figure 3 .  In the other case, i n  which UO is  a 



saddle point and 1 a cc:r.ter, the phase p lmc picture i s  the same as 

figure 3 with the role ai' -, Uo reversed. As i s  clear from our 

analysis we have t r i e d  t o  determine the struckx-c of the solutions 

Qf equations (lg), (20) from the properties of %'ne d;ifferentXL 

equations (27) or (32). 

predictions by-obtaining some solutions on a computer. 

In  the next section, we shall verify our 

4. Computer calculations 

Some of the resuJts given i n  the previous section were veri-  

f i e d b y  computing the solution of equations (lg), (20) on an IBM 

7094. The way t o  do th i s  is t o  choose values of U, H (different 

from 1, 4) lying on the eigen solution by using the l inear  equstion 

(29). 

the solution depends c r i t i ca l ly  on the position of the point of 

A l l  calculations were s ta r ted  close t o  U = 1, H = 8. Since 

start i n  the phase plane we ran several cases using values slightly 

different  from those obtained from the l inear  equation (29) .  For 

example, for  /4 = .81, O1 = .a, we obtained the solution using (a)U=1.0001, 

- -  du - .00001 and (b)U=1.0001, - du - - .GO1 while frm the l inear  equation 

we obtain a a u e  of - which l i e s  between .00001, .001. 

give the solution fo r  the casea (a), (b) above. 
dU the solution becomes unstable because we happen t o  use a value of -- w 

which l i e s  outside the oval of f igure 3 .  In  the case (a ) ,  we obtain 

ay dy 
dU 
ay 

Figures h and 4b 

I n  the case (b) 

a solution which almost returns back t o  i t s  i n i t i a l  value and re- 

peats i t s e l f .  (The repeti t ions are  evidently the cause of the computz- 

t iona l  error, which i f  decreased w i l l  show tha t  the solution i s  a 

so l i ta ry  pulse. Since only two  branches of the curve approach 
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U = 1, U = 0 the sol i tary pulse i s  the required solution of the 

wave form. ) 

We now turn t o  a calculation of 

We used = .1, e1 = .l. Taking a 

we obtained a solution consisting of 

dU - = 0 f o r  i t s  center i n  accord with aY 

case I considered 

point away from U 

i n  section 3. 

osci l la t ions having U = 1 

the f ac t  t ha t  U = 1, ,g 
d Y = O  

i s  a center. We see the:rs:fi>rsc: tha t  i n  case (I) even the so l i ta ry  wave 

does not exist .  

We have not made ar~,y coi@utakions about the point U = Uo as t h i s  

point is  of no in te res t  t o  us. 

This corresponds t o  a :;elution lying just within the oval pictured 

i n  figure 3. A more accura::;e choice of i n i t i a l  conditions would show 

t h a t  the  boundary of this oval corresponds t o  a so l i ta ry  pulse, that  

is, the solution forming Lhe boundary of the oval leaves U = 1, U = 0 

at y = - ao, and returns t o  t h i s  point at  y = + cg. 
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Figure Captions 

Fig. 1. f(?J> vs U f o r  Cases I, I1 of text .  

Fig. 2. The closed curve C enclosing the points u = U, and U = 1 
and lying close t o  the Waxis. 

Fig. 3. A p P r Q X h a t o  phase plane pfcture of the sehutien for the 
case I1 w h e n u =  1 is a saddle point and u = &  is a 
center. 

Fig. 4a .  Computed solution of equations (191, (20) fo r  B1 =.81, 
8, = .05, using perturbed values u = 1.0001, a = .ooool. 

ay 

Fig. 4b. Computed solution of equations (lg), (20) f o r  =.el., 
61 = .05, using perturbed values = 1.0001, a = .ool. 

ay 
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